Stone Duality for Skew Boolean Algebras with Intersections

نویسندگان

  • Andrej Bauer
  • Karin Cvetko-Vah
  • Jeff Egger
  • Mai Gehrke
  • Ganna Kudryavtseva
  • Jonathan Leech
چکیده

We extend Stone duality between generalized Boolean algebras and Boolean spaces, which are the zero-dimensional locally-compact Hausdorff spaces, to a non-commutative setting. We first show that the category of right-handed skew Boolean algebras with intersections is dual to the category of surjective étale maps between Boolean spaces. We then extend the duality to skew Boolean algebras with intersections, and consider several variations in which the morphisms are restricted. Finally, we use the duality to construct a right-handed skew Boolean algebra without a lattice section.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A non-commutative Priestley duality

We prove that the category of left-handed skew distributive lattices with zero and proper homomorphisms is dually equivalent to a category of sheaves over local Priestley spaces. Our result thus provides a noncommutative version of classical Priestley duality for distributive lattices. The result also generalizes the recent development of Stone duality for skew Boolean algebras.

متن کامل

STONE DUALITY FOR R0-ALGEBRAS WITH INTERNAL STATES

$Rsb{0}$-algebras, which were proved to be equivalent to Esteva and Godo's NM-algebras modelled by Fodor's nilpotent minimum t-norm, are the equivalent algebraic semantics of the left-continuous t-norm based fuzzy logic firstly introduced by Guo-jun Wang in the mid 1990s.In this paper, we first establish a Stone duality for the category of MV-skeletons of $Rsb{0}$-algebras and the category of t...

متن کامل

Stone duality for nominal Boolean algebras with ‘new’: topologising Banonas

We define Boolean algebras over nominal sets with a functionsymbol Nmirroring the N‘fresh name’ quantifier. We also define dual notions of nominal topology and Stone space, prove a representation theorem over fields of nominal sets, and extend this to a Stone duality.

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity

This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...

متن کامل

Title Fuzzy Topology and Łukasiewicz Logics from the

This paper explores relationships between many-valued logic and fuzzy topology from the viewpoint of duality theory. We first show a fuzzy topological duality for the algebras of Lukasiewicz n-valued logic with truth constants, which generalizes Stone duality for Boolean algebras to the n-valued case via fuzzy topology. Then, based on this duality, we show a fuzzy topological duality for the al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011